5.1 Area and Distance Problems

Learning Objectives: After completing this section, we should be able to

- find the area under a curve by estimating the sum of the areas of rectangular strips.
- apply finding the area under a curve in distance problems.

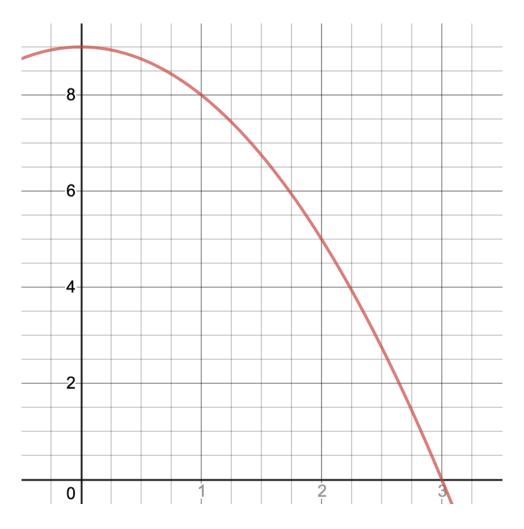
Example. Suppose I drove my car at a constant velocity of 55 MPH for 0.5 hours.

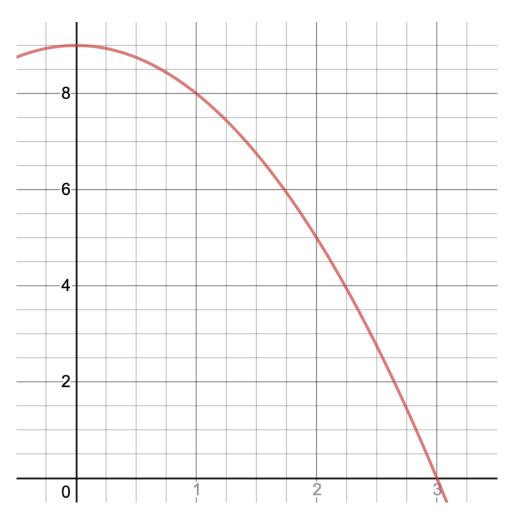
5.1.1 Area Under a Curve

The area of the region under the graph of f on [a, b] is

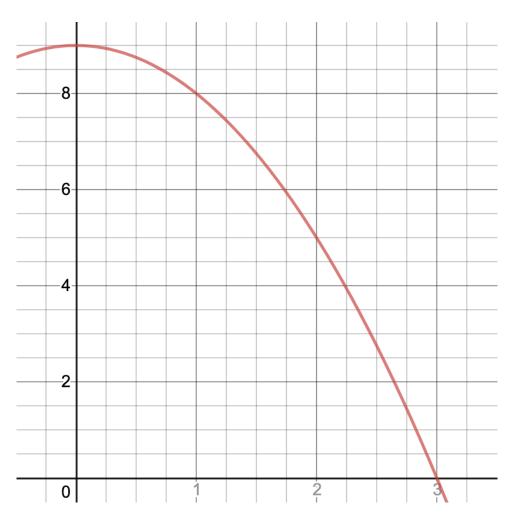
How can we approximate area under the curve?

Example. Let $f(x) = 9 - x^2$ on the interval [0,3].





Let $f(x) = 9 - x^2$ on the interval [0, 3].

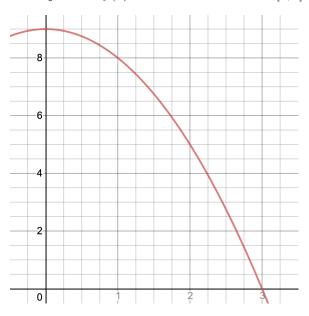


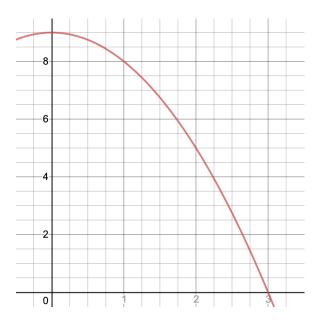
Let $f(x) = 9 - x^2$ on the interval [0, 3].

5.1.2 Exact Area

How can we improve our approximation?

Example. Let $f(x) = 9 - x^2$ on the interval [0,3].





5.2 The Definite Integral

Learning Objectives: After completing this section, we should be able to

- define a definite integral as the limit of a Riemann sum.
- evaluate definite integrals using summation properties.
- apply various properties of definite integrals.

Definition. Let f be a continuous function on [a, b].

That is a lot to write, can we be lazier?

Definition. Definite Integral: Let f be a function defined on [a, b].

5.2.1 Geometric Understanding of Area

Example. What does $\int_0^3 (9-x^2) dx$ look like graphically?

Net Area under a Curve

So far, our examples have been positive.

Example.

We can estimate the area using *Riemann Sums*: Suppose we have

• Left Riemann Sum

• Right Riemann Sum

• Midpoint Riemann Sum

Page 8 of 13

Example. Approximate $\int_{-3}^{1} f(x) dx$ using n = 4 rectangles with a Left, Midpoint, and Right Riemman sums.

5.2.2 Properties of Definite Integrals

1.
$$\int_a^b f(x)dx + \int_b^c f(x)dx =$$

2.
$$\int_a^b f(x)dx + \int_a^b g(x)dx =$$

3.
$$\int_{a}^{b} f(x)dx =$$

4.
$$\int_{a}^{a} f(x)dx =$$

5.
$$\int_{a}^{b} cf(x)dx =$$

$$6. \ \int_{a}^{b} |f(x)| dx =$$

Example. Suppose
$$\int_0^1 f(x)dx = 5$$
, $\int_0^2 f(x)dx = 2$, and $\int_1^2 g(x)dx = 3$. What is $\int_1^2 (2f(x) - g(x))dx$?

A note about dummy variables.

We can compute some definite integrals geometrically.

Example.
$$\int_{-2}^{3} |x - 1| dx =$$

Example.
$$\int_{2}^{4} \sqrt{1 - (t - 3)^2} dt =$$

5.3 Fundamental Theorem of Calculus

Learning Objectives: After completing this section, we should be able to

- establish the Fundamental Theorem of Calculus and apply it.
- identify the relationship between differentiation and integration as inverse processes.

5.3.1 Fundamental Theorem of Calculus, part 1

Recall: $\int_{a}^{b} f(x) dx =$

What if we write the function for area under f(t) as

Let's find $\frac{dA}{dx} =$

Theorem. If f is continuous on [a, b],

Example.
$$\frac{d}{dx} \int_{1}^{x} (t^3 + 1) dt$$

5.3.2 Fundamental Theorem of Calculus, part 2

Theorem. Let f be continuous on [a, b]. Then,

Example. We found an approximate answer for $\int_0^3 (9-x^2) dx$ in a previous section.

Example. Evaluate $\int_5^9 (7x^3 - e^x) dx$.

Example. Evaluate $\int_{1}^{4} \left(\frac{3}{x^2} - 9\right) dx$.

You try!

Example. Evaluate $\int_{1}^{3} \left(3x^2 - 8x + \frac{1}{x} \right) dx.$

You try!

Example. Evaluate $\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx$.